太td打击人了吧?
要知道。
哪怕是徐云穿越来的2022年,数学界也依旧没有一个统一的亲和数公式。
无论是欧拉还是叶维勒,他们的公式都有一定的失误率——例如欧拉便漏算了1184/1210这组数,直到1867年才由意大利的一个神童计算出来。
这个神童的名字叫做帕格尼尼,每次想到这个名字,徐云都会歪楼到猪柳蛋帕尼尼……
后世筛选亲和数靠的主要是约数和比较,也就是符合条件的输出yes,反之便是no。
说难听点。
后世筛选的实质,其实就是穷举法。
结果在1850年这个时代,高斯和黎曼居然都推导出了亲和数的标准公式?
不过考虑到这二位在历史上的成就,加之欧拉已经推导出了部分亲和数公式……
好吧,他们能做到这一步似乎也没啥好意外的。
与此同时。
这也算是解开了一桩数学史上的谜题:
在计算机发明之前,几乎每个数学流派都会在亲和数方面投入大量的精力和时间。
但唯独高斯的哥廷根数学派系除外。
无论是高斯本人,还是黎曼、雅可比、戴德金或者狄利克雷,他们全都没有留下过任何研究亲和数的作品或者记录。
这其实是一种很奇怪的现象,好比后世搞量子理论的大佬不去研究微扰论一样违和。
如今随着高斯的这番话,一切总算是真相大白了:
合着他们早就破解了亲和数的谜团,觉得太简单才没去管……
随后高斯看了眼有些意犹未尽的徐云。
沉吟片刻,主动来到皮箱边翻找了几下。
很快。
他便从中取出了另一册稍厚一些的手稿,递给了徐云,说道:
“罗峰,既然你对亲和数有兴趣,这卷手稿或许会符合你的口味。”
高斯的宝藏(下)
“……”
书房内。
看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。
这里头的内容会是什么?
要知道。