在1747年到1923年之间,数学家们只用欧拉的公式计算出了217对亲和数。
当然了。
随着计算机被发明出来后,亲和数的计算就简单许多了。
就像圆周率已经计算到了628万亿位一样,后世亲和数已经锁定到38万位数以上了。
你看,数字都有女朋友了,某些人却还是单身狗。
哦,徐云也是啊,那没事了。
总而言之。
在后世已经计算出大量亲和数的前提下。
徐云期待的并不是高斯的这卷手稿能给未来带去多大帮助,而是……
高斯作为赫赫有名的数学王子,他对于亲和数到底有没有做过计算呢?
至少在徐云的认知里。
后世高斯的‘遗物’中肯定是没有这卷手稿的——至少已经公开的那些笔迹里找不到相关手稿的身影。
想到这里。
徐云不由看了眼高斯,说道:
“高斯教授,必须要选择好手稿后才能查看内容吗?”
高斯点了点头:
“当然,后续内容需要付费观看。”
高斯的回答在徐云的预料之中,所以他也没想着讨价还价啥的,当即答道:
“那么高斯教授,我选的第一份手稿就是它了。”
高斯见说摆了摆手,意思就是随你的便。
得到高斯的允诺后。
徐云郑重的将这卷手稿拿到了书桌边,小心的解封了起来。
绑缚手稿的道具是一根红丝线,徐云拿住丝线一头,像是解鞋带似的一拉。
咻——
手稿瞬间展开。
这份手稿意外的有些薄,大概就一两张的模样。
徐云依旧是戴着手套将其拿起,认真的看了起来。
手稿的开头记着几个数字,分别是:
220/284、2924/2620、17296/18416、9437056/9363584……
这几个数字没什么特别的,都是前人所计算出来的亲和数。
接着就是欧拉归纳出来的公式。
不过当徐云继续往下扫了几眼,他的呼吸便骤然停滞了几秒钟。
只见手稿的下半部,赫然写着几个数字:
5564/5020
6368/6232
10856/10744
14595/12285
18416/17296
……
1000452085744/1023608366096
1001583011750/1019368284250……
最后一组数字的末尾可以看到一个清晰的黑色小点,显然是钢笔笔尖留下的痕迹。
而在这组数字下方,还可以看到一道公式:
σ(z)=σ(x·y)=1+[σ(x)-1]+[σ(y)-1]+[σ(x)-1][σ(y)-1]=1+σ(x)+σ(y)-2+σ(x)σ(y)-σ(x)-σ(y)+1=σ(x)σ(y)
d(x)=x(1+12+13+……+1x2)≈x[ln(x/2+1)+r]≈x(lnx-0116)。
另外在公式的右侧,还存在着几个龙飞凤舞的字母。
翻译成汉字便是:
【太简单不算了,无聊死个人】。
“……”
徐云无语良久,随后抬起头看向了高斯。
高斯眨了眨眼:
“你瞅啥?”
徐云朝他轻轻扬了扬手中的手稿,对高斯说道:
“高斯教授,您这份手稿末尾的那句话……”
“哦,你说那个啊。”
高斯回忆了几秒钟,很快想起了徐云说的内容,便解释道:
“字面意思,当初我在收到约瑟夫寄来的欧拉手稿后花了两天……应该是两天时间吧,要不就三天——反正很快就算出了上百组的亲和数。”
“后来我原本想归纳出一道对应的公式,不过算了一半感觉太简单了,就把它放到了一边。”
“哦对了,波恩哈德在三年前也算出来了这个公式,他的评价是有手就行。”
徐云:
“……”
高斯口中的约瑟夫就是约瑟夫·路易斯·拉格朗日,也是欧拉的爱徒,同样是一位青史留名的数学家。
他与欧拉的关系,差不多就相当于黎曼和高斯一般。
欧拉——拉格朗日——柯西,以及高斯——狄利克雷——黎曼,这算是近代数学很有名的两个传承派系。
另外在历史上。
拉格朗日也是欧拉手稿的继承者之一,他会寄信给高斯倒也正常。
只是……
高斯的这番话,未免也