第519节 (第2/2页)

便是亲和数的万恶之源。

亲和数问世以后毕教主并没有歇着,而是带领着毕氏学派乘机大肆宣扬起了“万物皆数”。

不过很尴尬的是。

毕教主宣传了几十年,研究了几十年,亲和数依然还是只有220和284。

直到毕教主去世,人们对于亲和数的认知依然停留在220和284。

而且更尴尬的是在之后几百年里,数学界依然没有找到第二对亲和数。

所以大家开始怀疑220和284是毕教主碰巧随口说出来的两个数字。

随着对于亲和数研究热度的减退,它就此渐渐淡出人们的视野。

直到公元850年,阿拉伯全能王数学家塔别脱·本·科拉提出了一个想法:

无穷的自然数中亲和数一定不止一对!

他和以往数学家不同,他不打算去从漫无边际的自然数中筛选。

而是从一般规律出发,试图找到亲和数的通用公式。

这位全能王为了研究亲和数放弃了其他所有科目的研究,年仅20多岁就谢顶了。

不过功夫不负有心人,后来他总算归纳出了一个规律:

a=3x2(x-1)-1

b=3x2x-1

c=9x2(2x-1)-1。

这里的x是大于1的自然数,若abc均为素数,那么2xab与2xc就是一堆友好数。

比如取x=2,那么a5,b=11,c=71。

所以2x2x5x11=220和2x2x71=284为一对亲和数。

结论一出,证明了毕教主不是信口开河,亲和数的确存在,并且可以通过计算得到。

从这里起,故事开始有意思了起来……

自那以后。

数学家们不再没有头绪的寻找亲和数。

而是一边寻找更为简单的公式,一边通过公式大量计算来寻找亲和数。

但遗憾的是。

在之后800多年里,数学家们不仅没有优化全能王的公式,而且一对新的亲和数都没有找到……

这也就是说。

在毕达哥拉斯之后2500年,没有人能够找到第二对亲和数的影子!

这个局面一直持续到了1636年,逼王费马闪亮登上历史舞台,一举打破了2500多年的历史尴尬。

这位“业余数学家”实在看不下去了,白天养家糊口,晚上计算亲和数,算的脑瓜子嗡嗡的。

最终在他算的满头白发的时候,终于找到了第二对亲和数:

17296和18416。

接着继费马之后,笛卡尔也计算出了第三对亲和数:

9437056和9363584。

然后就是大挂逼、人形自走手稿打印机欧拉的登场:

他在1747年……也就是自己39岁的时候,一口气找到了30对亲和数!

接着大家还没有反应过来,甚至来不及鼓掌,他又宣布再次找到了30对……

但到了这一步,亲和数就僵住了:

直到1923年,数学家麦达其和叶维勒才会出其不意、明修栈道暗度陈仓。

他们一口气将亲和数扩展到了1095对,其中最大的甚至达到了25位数。

最新小说: 巨星从综艺主持人开始 美国8大名案 美国之殇 快穿:笨蛋美人也要攻略 抱了无限流大佬的大腿之后 开局从无敌天赋开始 宗门白月光她不干了 懒懒小萌妃:误惹妖孽坏王爷 逃荒种田,农门长姐养家忙 [综漫] 新晋狱卒哒宰君 尘埃落定:学霸要反击 [综琼瑶同人] 重生继皇后 池塘春草人倾国 [综武侠] 重生之黄药师的桃花债 媚中光明会 [红楼同人] 红楼之林家大小姐 [综武侠] 我靠马甲建立天下第一大派 [综英美]角色扮演的风吹到了崩铁 永恒新国度 在大海边树林里的野外调教