后再取个旋度,您觉得可行吗?”
“这是我在剑桥大学那会儿听一位学长说的,当时他们推导的情景恰好也是相同的变式……”
唰——
结果徐云话没说完。
叶笃正便低头在纸上写下了一个函数:
c=p/p+u2/2。
这个函数来自等式▽(u2/2)=(u·▽)u+uxw,也就是伯努利函数。
接着叶笃正又按照徐云的说法取了个旋度,得到了一个新的公式:
aw/at=▽x[uxw]+v▽2w。
别看这个公式瞅起来跟颜文字似的,好像又是( ̄▽ ̄)~*( ̄▽ ̄)/又是(w)[]~( ̄▽ ̄)~*。
对于叶笃正而言。
在见到它的一瞬间,他的心脏便狠狠漏跳了一大拍!
这是……
w的演化方程!
同时由于▽x(uxw)=(w·▽)u-(u·▽)w的缘故,所以这个演化方程还可以改写为对流导数的形式:
dw/dt=(w·▽)u+v▽2w。
写到这里。
叶笃正再次一停顿,扭头又看向了徐云,迫不及待的问道:
“韩立同志,后面呢?后面的思路是什么?”
此时此刻。
叶笃正仿佛回到了自己在芝加哥读书的日子。
当时他在追一本连载于芝加哥日报的推理小说,每每看完一章时便迫不及待的想要疯狂进行催更。
如果不是怕失去留学海外的宝贵资格。
叶笃正甚至考虑过要不要把作者绑到小黑屋去更新——一天必须要更新个五万字,要不然当天不能吃饭!
而在他对面。
徐云则示意乔彩虹将自己的轮椅再朝叶笃正靠近了一些。
随后他从叶笃正手中接过纸和笔,一边写一边解释道:
“叶主任,这个方程想要继续推导下去,首先就要明白这个变式的物理意义。”
“我们在这里再导入一个角动量方程做个对比……你看,物理意义应该就很明显了吧?”
叶笃正认真看了小半分钟,很快哦了一声:
“哦,我懂了。”
“右边描述的是因为流体元的拉长,体元惯量矩的改变,还有就是粘性力矩作用在体元上,没错吧?”
徐云点了点头。
这个变式的物理意义,差不多可以算是后世涡度的入门级概念。
也就是流体块的涡度可能因为它的拉长而改变,引起惯量矩的改变,或者因为粘性应力加速或者减速。
紧接着。
徐云又写了个佩克莱数。
也就是pe=ud/α,又在上头换了个圈,带入回了原式。
看到这里。
叶笃正的鼻翼中忽然传出了一声带着意外的鼻音,眉头骤然一扬。