诸位同志,我对氢弹小型化的设计差不多就是这样,倘若哪位同志有想法或者异议,欢迎现在就提出来。”
氢弹的相关参数在任何国家都是至高级别的机密,不过即便是高到了荒天帝那种高度,这些机密数据终究也是要通过生产落地的。
而眼下会议室的这些大佬们便是负责生产的一环,因此大于在介绍氢弹内容的时候并没有多少隐瞒,甚至连具体的参数都报了出来。
听到大于的问题后。
台下很快有一位比较年轻的专家举起了手:
“于敏同志,我有个问题。”
大于很客气的朝对方笑了笑:
“张清同志,有什么话但说无妨。”
这位年轻的专家叫做张清,和水浒传里的没羽箭同名,与基地另一位叫做张郃的女同志并称221基地的两大‘武将’。
目前张清负责的是中子束准直器的数据推导与生产研究,算是为数不多理论和应用同时能带项目的人才。
随后张清看了眼自己面前的算纸,上头记录了很多大于在介绍时提及的信息和参数:
“于敏同志,按你刚才所说,你设计的立体偏转角是55,这个数值会不会有点小?”
“根据卢瑟福公式的思路,截面不关心α系数的正负,小型化后氢弹内部的起爆角动量应该是e=v∞22,=v∞pφ0=∫r∞(p/r2)dr1-p2/r2-2u/(v∞2)……”
“我简单根据这个逻辑计算了一下,小数点后的精确结果我不敢保证,但个位数应该不会小于7才是。”
张清白白净净的外表用后世的说法就是有点‘小受’,不过在提问的时候他脸上的表情和语气都很严肃。
立体偏转角。
这可是氢弹设计……准确来说是整个原子物理中一个很重要的概念。
立体角常用字母Ω表示,是一个物体对特定点的三维空间的角度,是平面角在三维空间中的类比。
它描述概念很简单:
是站在某一点的观察者测量到的物体大小的尺度。
例如,对于一个特定的观察点,一个在该观察点附近的小物体有可能和一个远处的大物体有着相同的立体角。
以观测点为球心,构造一个单位球面,任意物体投影到该单位球面上的投影面积,即为该物体相对于该观测点的立体角。
这和“平面角是单位圆上的一段弧长”类似。
立体角是表示空间张角大小的一个度量,这和“平面角是单位圆上的一段弧长”这个定理类似。
平面上,圆周角乘以半径等于弦长,空间中立体角乘以半径的平方等于球表面积。
这样可以定义一个立体角公式Ω=sr2,面积微元为r2s(θ)dθdψ,立体角为Ω=s(θ)dθdψ,闭合曲线的立体角就是Ω=∫sθdθdψ=2π(1-sθ0)。
所以立体角的单位并不是很多人可能下意识认为的【°】,而是sr。
立体角的最大值是4π,或者约等于1257。
在核聚变过程中。
立体角是起爆角动量的联动参数,某种意义上可以理解成作家单日码字总数和码字时速的关系。
在每天码字时间……也就是x射线传播速度不变的情况下。
作家码字时速(起爆角动量)越快,单日码字(立体角)的总数就会越多(高),反之亦然。
而就像大多数作家最少都要日更四千字一样,立体角在每个情景下都会有一个理论上的下限。
这下限具体会根据每个系统框架的设定而变动,在大于设计的这个框架中,立体角理论上应该不会低于7才对。
现场除了张清之外还有不少理论方面的大佬,他们闻言也纷纷拿起笔做了个简单计算。
在大于已经明确给出了相关参数的情况下,这种计算过程说白了就是单纯用高斯消元法去解三元三次方程组。
因此两分钟不到。
很多学者便放下了笔,或是与身边的人低声做起了交流,或是轻轻点了点头。
很明显。
张清所说的情况确实存在——大于设计的立体角太小了。
低于下限的立体角虽然可以增加核材料的爆炸效率,但对于后续的能量传输却是一大致命缺陷,很容易导致起爆失败——就像作家日更少于4000一样,可以这样搞,但你全勤就没了。
不过大于此时的表情却显得很淡定,只见他先是等所有在计算的学者们都放下了笔,才慢慢说道:
“没错,张清同志,如果从卢瑟福公式的思路来看,这个立体角确实有些小了。”
“据我们目前掌握的信息,无论是海对面还是毛熊的千层饼氢弹,应用的也都是卢瑟福公式。”