现了一个情况。
只见他在方程的第三行和第五行边画了两根线,又打了个问号。
表情若有所思:
“似乎……”
“这张纸片的复合方程组,可以分成三个部分计算?”
众所周知。
正则化理论,最早是为解决不适定问题而提出的。
长期以来人们认为,从实际问题归结出的数学问题总是适定的。
早在20世纪初。
hadaard便观察到了一个现象:
在一些很一般的情况下,求解线性方程的问题是不适定的。
即使方程存在唯一解,如果方程的右边发生一个任意小的扰动,都会导致方程的解有一个很大的变化。
在这种情况下。
如果最小化方程两边之差的一个范函,并不能获得方程的一个近似解。
到了20世纪60年代。
tikhonov,ivanov和phillips又发现了最小化误差范函的加正则项。
即正则化的范函,而不是仅仅最小化误差范函,就能得到一个不适定的解题的解序列趋向于正确解。
换而言之。
第一部 分的方程组,其实是一个描述渐变区域的序列集合。
甚至可能是……
图像?
想到这里。
徐云顿时来了兴趣。
从4d/b2可以判断,这应该是一个涉及到旋转曲面的问题。
第二行的∑(jik=s)n(jik=q)(xi)(wj)则可以确定曲面与经线成了某个定角。
既然是定角,那么就可以假设定模型λ=(a,b,π),以及观测序列o=(o1,o2,……,ot)。
那么就有α1(i)=πibi(o1),i=1,2,……,n
αt+1(i)=[j=1∑nαt(i)aji]bi(ot+1),i=1,2,……,n
十五分钟后。
看着面前的结果,徐云若有所思:
“极大化的模型参数吗……”
随后他思索片刻,继续在纸上写下了一道公式:
q(λ,λ)=i∑logπi1p(o,iiλ)+i∑(t=1∑t-1logaitit+1)p(o,iiλ)+i∑(t=1∑tlogbit(ot))p(o,iiλ)。
这是一个很简单的投影曲线,并且圆锥对数螺线上任一点的挠率也与该点到轴的距离成反比。
因此可以化简成另一个表达式。
δt(i)=i1i2,……,it-1axp(it=i,t-1,……,i1,ot,……,o1iλ),i=1,2,……,n
解着解着,徐云的表情也愈发凝重了起来。
两个小时后。
徐云看着面前的图纸,眉头紧紧的拧成一团:
“好家伙,第一组方程的化解项,居然是一个观测态的方程?”
观测态方程其实是个很奇怪的玩意儿,它在数学中的释义比较复杂,但在物理中的释义却很简单: