第149节 (第1/2页)

得。

又一个小谜团被破开了。

了解宋史的都知道,宋代是个赌博业非常非常发达的时期。

其中比较常见是就是掷钱和关扑,进阶点的就是蹴鞠赛马。

再离谱一点的,就是敢赌皇帝今天宠幸哪个妃子——有些时候后台还是皇帝你敢信?

基本上除了皇位归属不敢赌外,任何东西都能成为赌博的名目。

因此。

一件很神奇的事儿发生了:

北宋截止到1023年之前,每年中大奖的欧皇都会被记录下名字。

元祐七年,也就是公元1092年的时候。

汴京有个欧皇中了七百多贯钱,其登记的名字就是叫韩公廉。

因此后世的数学界有部分人坚信,这个韩公廉就是那个数学家,两者是同一个人。

毕竟韩公廉这个名字可以说相当少见,重合的概率并不大。

不过在另一部分人那儿,则以没有准确资料为理由给否了。

虽然明面上是所谓的严谨起见,但实际上嘛,徐云更偏向是来自非酋的愤怒……

视线再回归原处。

在彼此介绍完认识后,徐云又简单复述了一遍问题内容。

又过了一会儿。

几位最次也是当代一流末尾的数学家,正式开始了演算。

看看这配置吧:

贾宪、韩公廉、刘益,光记在史书上的数学家就有三个。

剩下的另外三人虽然名不见经传,史书也没多少记载。

但从简单的交谈中也不难看出,这几人的数学涵养也相当不错,只是因为数学家的身份被忽视罢了。

甚至可以这样说。

在眼下这个时代,在公元1100年。

这六人就是全世界最强的数算天团!

真·限定版阵容。

其实从后世的角度来看。

徐云提出的问题其实不算很难:

这属于菲涅耳近似的一道门槛,严格意义上来说是几何光学的一种,解法堪称多种多样。

最简单的一个,当然就是几何光学作图法。

不过简单归简单,作图法所能给出的信息也非常有限,只能给出已知焦距的透镜的成像性质。

它没法把焦距和透镜本身的性质联系起来,属于数学上最简单的方式。

更进一步,则可以使用几何光学的基本原理,也就是费马原理。

利用费马原理,可以给出几何光学近似情况下透镜形状和材质对成像的影响,数学上比前一个麻烦一些。

第三阶段就是惠更斯-菲涅尔原理,也就是光的标量波衍射理论。

用这个理论分析成像问题,还能够给出更多的信息——比如透镜孔径的影响等等,这也是为什么天文望远镜口径越大越好的原因。

更严格一点的自然就是麦克斯韦方程组了,求解给定边界条件下的波动方程。

但最后这种方法实在太麻烦了。

举个最直观的例子:

后世大学阶梯教室的黑板都见过吧?

如果用第四种方法,最少需要六块这种黑板——而且还不一定能算出解析解。

所以除非前面的近似理论不适用,否则一般没人这么干。

也正因如此,徐云准备走的是第三种思路。

虽然第三种方式在理论数学上复杂很多,算一个透镜要做两次二重积分。

但一来它的现实效果最好,在理论体系严重滞后的情况下,现实效果的重要性无需多言。

二来便是……

老贾,他可是杨辉三角的真正发明人。

杨辉三角是解积分最契合一古老工具之一,因此想让老贾踏出那一步,理论上其实是有不少实操性的。

当然了。

这里的踏出一步并不是指发明微积分,而是一种思路上的暂时性应用。

毕竟单靠一个杨辉三角是没法鼓捣出来微积分的,需要一定的数学积累才行。

更关键的是。

这种数学积累指的还不是个人积累,而是整个数学界、整个时代的积累,是一种质变的升华。

因此徐云也没打算一口气吃成个胖子,更别说他和小牛的关系还不错,好歹是个酒肉朋友来着。

视线再回归原处。

在骤然发现了一个新领域后,老贾和韩公廉等人表现出了相当浓郁的兴致。

毕竟这年头,这种团队攻关的情况太少见了。

只见几人或在讨论思路,或直接上手进行了数据测量。

比如刘益的手里,此时便出现了一个很原始的工具:

曲尺。

说道曲尺,就不得不先说另一个概念了:

角度。

华夏古人在其漫长的科技实践中,其实很早形成了抽象角度概念——这里的早字,甚至可

最新小说: 【鬼灭之刃】精液采集系统 只有鱼知道(包养 强制) 【黑执事bg】切姆斯福德记事 保护我方反派 【综漫】18X榨精系统 相见欢(兄妹纯骨科 1v4) 夹遍优质男(催眠女性向np) 【恋与深空】左右缝缘(秦彻×你 黎深×你) 蔓延(人妻出轨、NPH) 与他有私(包养、重逢) 风流alpha的财阀之路(GL NP) 【哨向nph】如你所见,我是个女大学生 【咒回同人】禅院家的女人 脸盲怎么了,不脸盲轮得到你?(nph) 猫猫我啊,想拍飞饲主 靠空间躺赢 丧尸与狗,我越过越有 当毛绒绒捡到毛茸茸 beta怎么就不是1了 满级经纪人捧红妖怪日常