有能量,那么自然就有频率之说了。
人眼在长期进化中,只对波段约380~780n的频段感光,因此这个特定频段的电磁波被称为可见光。
也就是赤橙黄绿青蓝紫等等。
而除了可见光之外,还有许多人眼看不见的光。
如无线电波、红外线、紫外线、x射线、γ射线,就属于看不见的光。
这些光都是电磁波谱中的某一个波段和频率。
x射线是仅次于γ射线的电磁波,波长在10纳米~001纳米之间,频率在316~320赫兹之间,能量为124ev~124v。
这是每一个光子的能量,x射线属于高能射线,因此它的穿透力很强。
当x射线照射人体时。
一部分x射线被人体物质吸收,大部分则会从原子隙缝穿越透过。
频率越高波长越短的x射线能量越大,穿透能力越强。
在穿透物体的过程中。
根据物体的密度和厚度,x射线的吸收度不一样。
因此穿越的x射线就有强有弱,这样就在感光胶片中显示出被穿越物体的结构来——这就是后世x光的原理。
说到这里,那么问题就来了:
既然x射线是不可见光,那么伦琴是怎么注意到它的呢?
课本上只是写了伦琴在真空管外的屏幕上发现了光点,但x射线不可见,理论上也注意不到它才对嘛。
当然了。
看到这里,或许有人会问:
不对吧。
为什么紫外线可不见,但紫外线灯却能看到紫光呢?
原因很简单:
因为紫外线灯的厂商在灯内加入了光引发剂或光敏剂,经过吸收紫外线光后产生活性自由基或离子基,从而引发聚合、交联和接枝反应。
这个过程有个专属名词,叫做uv固化。
uv光辐射物理性质类似于可见光,所以你才能见到紫外线灯的‘光线’。
真正的紫外线,你是看不到的。
因此对于伦琴而言。
即使在密闭的屋内,顶多也就阳极处会因为电离效果而出现少许光线(也就是法拉第他们观察到的射出点),而末尾处应该是看不到才是。
真正帮助伦琴发现x射线的,其实是一种叫做氰化铂酸钡的东西。
它在与x射线接触后,便会发出一种可见的荧光。
氰化铂酸钡是一种19世纪常见的涂料,实验室和文艺创作中都很常见。
当时伦琴见到投射有x射线光斑的东西,便是一枚涂有氰化铂酸钡的荧幕。
而如今这间实验室内。
唯一涂有氰化铂酸钡的,便是……
小麦所见到的那个花瓶外饰。
所以有些时候徐云真的不得不怀疑,世上是不是真有气运之子这种说法。
在他的计划中。
之所以会在实验过程使用钨板做阳极,目的只为了将它固定成一种阴极射线研究的常用材料。
就像电解池常用铜棒一样,让后人养成一种习惯。
等使用的人一多,短则年,长则十一二年。
总会有人凑巧的见到x射线打在类氰化铂酸钡材料上的现象。
届时呢,徐云已经安然魂归故里(?)。
时间上又与现如今有一定缓冲期,无疑称得上是一个非常精妙的安排。
结果谁能想到。
小麦这货不讲武德,愣是找到了屋内唯一涂有氰化铂酸钡的花瓶,它还偏偏就在x射线的光路上……
与此同时。
一千公里外的尼德兰。
一座叫做阿佩尔多恩的小城里。
某所幼儿园内。
一位正在准备午睡、面容看上去普普通通的小男孩,忽然伸出手,抓了抓空气。
不远处的保育员见到了这一幕,便走过来问道:
“发生了什么事吗?”
小男孩下意识的张了张嘴。
不知为何,他忽然感觉心中空落落的,仿佛……
有什么东西失去了一般。
不过最后,他还是摇了摇头:
“我没事,桑奇老师。”
“那就先睡午觉吧,伦琴。”
……
又多了一朵乌云
没有上帝视角的徐云并不清楚。
小麦的这一声突如其来‘啊咧咧’,不但让历史踉跄着又往前走了两步。
还让上千公里外的一个小男生,在五岁的时候便体验了一回牛头人的感觉。
此时的徐云正装摆出了一脸新奇的神色,和黎曼像是吉祥物似的站在一旁,充当着大佬们的气氛组。
只见高斯继续观察了小半分钟射线,忽然想到了什么,扶了扶眼镜,目光在光源和花瓶处反复扫了几次。
韦伯对于